Features

- Fred Chip Planar Construction
- Superfast 35nS and 50nS Recovery Time
- Low Forward Voltage Drop
- Low Reverse Leakage Current
- High Surge Current Capability
- Epoxy Meets UL 94V-0 Classification
- Ideally Suited for Use in High Frequency SMPS, Inverters and As Free Wheeling Diodes

Mechanical Data

- Case: ITO-220A, Full Molded Plastic
- Terminals: Plated Leads Solderable per MIL-STD-202, Method 208
- Polarity: See Diagram
- Weight: 1.9 grams (approx.)
- Mounting Position: Any
- Mounting Torque: 0.6 N.m Max.
- Lead Free: For RoHS / Lead Free Version

ITO-220AC

Maximum Ratings and Electrical Characteristics $@ \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified
Single Phase, half wave, 60 Hz , resistive or inductive load. For capacitive load, derate current by 20%.

Characteristic	Symbol	$\begin{gathered} \hline \text { ER } \\ \text { 1000F } \end{gathered}$	$\begin{gathered} \hline \text { ER } \\ \text { 1001F } \end{gathered}$	$\begin{gathered} \text { ER } \\ \text { 1001AF } \end{gathered}$	$\begin{gathered} \text { ER } \\ \text { 1002F } \end{gathered}$	$\begin{gathered} \text { ER } \\ \text { 1003F } \end{gathered}$	$\begin{gathered} \text { ER } \\ \text { 1004F } \end{gathered}$	$\begin{gathered} \text { ER } \\ \text { 1006F } \end{gathered}$	Unit
Peak Repetitive Reverse Voltage Working Peak Reverse Voltage DC Blocking Voltage	VRrm VRWM VR	50	100	150	200	300	400	600	V
RMS Reverse Voltage	VR (RMS)	35	70	105	140	210	280	420	V
Average Rectified Output Current @ $\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}$	Io	10							A
Non-Repetitive Peak Forward Surge Current 8.3ms Single Half Sine-Wave Superimposed on Rated Load (JEDEC Method)	IFSM	150							A
Forward Voltage @ $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~A}$	VFM	0.95						1.7	V
Peak Reverse Current $@ T_{C}=25^{\circ} \mathrm{C}$ At Rated DC Blocking Voltage $@ T_{C}=100^{\circ} \mathrm{C}$	IRM	$\begin{gathered} 10 \\ 500 \end{gathered}$							$\mu \mathrm{A}$
Reverse Recovery Time (Note 1)	trr	35				50			nS
Typical Junction Capacitance (Note 2)	CJ	75					50		pF
Thermal Resistance Junction to Ambient Thermal Resistance Junction to Case	Rө JA Rө Jc	$\begin{gathered} 75 \\ 5.0 \end{gathered}$							${ }^{\circ} \mathrm{C} / \mathrm{W}$
RMS Isolation Voltage, $\mathrm{t}=1 \mathrm{~min}$	Viso	1500							V
Operating and Storage Temperature Range	TJ, Tstg	-55 to +150							${ }^{\circ} \mathrm{C}$

Note: 1. Measured with $\mathrm{I}_{\mathrm{F}}=0.5 \mathrm{~A}, \mathrm{I}_{\mathrm{R}}=1.0 \mathrm{~A}, \mathrm{I}_{\mathrm{RR}}=0.25 \mathrm{~A}$.
2. Measured at 1.0 MHz and applied reverse voltage of 4.0V D.C.

Fig. 1 Forward Current Derating Curve

NUMBER OF CYCLES AT 60Hz
Fig. 3 Forward Surge Current Derating Curve

PERCENT OF RATED PEAK REVERSE VOLTAGE (\%)
Fig. 4 Typical Reverse Characteristics

MARKING INFORMATION
\square

PACKAGING INFORMATION

BULK

Tube Size $\mathrm{L} \times \mathrm{W} \times \mathrm{H}(\mathrm{mm})$	Quantity (PCS)	Inner Box Size $\mathrm{L} \times \mathrm{W} \times \mathrm{H}(\mathrm{mm})$	Quantity (PCS)	Carton Size $\mathrm{L} \times \mathrm{W} \times \mathrm{H}(\mathrm{mm})$	Quantity (PCS)	Approx. Gross Weight (KG)
$525 \times 31 \times 6$	50	$558 \times 150 \times 40$	1,000	$570 \times 235 \times 170$	5,000	11.85

RECOMMENDED SCREW MOUNTING ARRANGEMENT

The full molded plastic package affords a major reduction of hardware as compared to a standard TO-220 package. However, precautions should be made in mounting procedure.

A conical washer should be used to apply proper force to the device. Screw should not be tightened with any type of air-forced torque or equipment that may cause crack on device package.

A layer of thermal grease or thermal pad in the interface will be considerably helpful for heat dissipation.

